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AN INTRINSIC THEORY OF A COSSERAT CONTINUUM

YOSHIYUKI YAMAMOTO

Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo

Abstract—In this paper, a linear intrinsic theory is developed for a Cosserat continuum as a natural extension
of the classical theory of elasticity. Introducing the stress functions, a decomposition theorem of Hilbert space
for stress distribution is derived, and the properties of the so-called eigen stress is discussed.

1. INTRODUCTION

MANY papers have been published for the elasticity of Cosserat continuum, and some of
them have treated the fundamental characteristics of this new elasticity [1-6]. In this paper,
stress functions are introduced naturally from the global condition of equilibrium, and the
condition of compatibility is investigated thoroughly. The structure of Hilbert space in
which the stress distributions are expressed is examined, and a decomposition theorem is
proved by a method similar to that of the classical theory of elasticity [7].

Assume a smooth surface in a Cosserat continuum in a state. After deformation, how-
ever, this surface becomes jagged, and it is due to the deformations of the micro-medium.
As to a deformed Cosserat continuum, it is assumed that the micro-rotation or the rotation
of the micro-medium relative to the macro-medium is due to the so-called couple-stress,
which contributes a part of the moment exerting on an inner surface of a Cosserat con-
tinuum.

Let x, (i = 1,2, 3), be the rectangular Cartesian coordinate. Assume that a Cosserat
continuum locates in a certain domain V. The coordinate x' of a material point can be
introduced in the undeformed configuration, and it is regarded as the Lagrangian co-
ordinate. In this paper, the summation convention is used as usual, and indices after a
comma indicate the ordinary differentiation with respect to appropriate Lagrangian
coordinates.

2. STRESS FUNCTIONS

In a deformed state, the stress distribution s* in the micro-medium is not necessarily
smooth but may be singular. From the view-point of the macro-medium, the stress distri-
bution s” can be equivalently substituted by the macro-stress ¢'/ and the couple-stress

pM= — piy:
ff sn;dX = fj oiin;dX
X X

ff xUsi¥p, dX = ff (xUa™ + yi*yn, dX
X X
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(1)
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where X is any smooth surface portion in the undeformed state, whose diameter is larger
than the scale of the micro-medium, n; is the unit normal vector on it, and brackets used
with indices mean the mixing with respect to appropriate indices:

xUs™® = J(ods™* — x's*) (2)

The macro-stress ¢/ and the couple-stress u“*, which will be referred as the stress (o, p),
can be considered to be expressed by differentiable functions of x".

Consider a self-equilibrated stress (o, #). The corresponding resultant force and moment
on any two surfaces with a common boundary curve give the same values, owing to equili-
brium of the body portion between these two surfaces. Therefore, the resultant force and
moment on any surface region X should be determined by line integrals of certain functions
on the boundary 0X of X:

ff on;dX = %f ey, dx?
X ax

3)
ff (xUo™ + iy, dX = %f PigMey, dx?
X 0X
where
1, if ijk is an even permutation of 123
e =e% = { —1, ifijkisan odd permutation of 123 )
0, otherwise.
The functions ¢** and ¢§* are considered as such differentiable functions of x’ that
= =M, G = — g = — gt 5
By virtue of Stokes’ theorem, (3) becomes as
[Jomax =[] 6% 0x
(6)
JJ (xYe™ 4 iy, dX = ff oY n dX.
It then follows that
o = ¢U, (7a)
xUg™ 4 i = oM . (3)

Eliminating ¢'** and ¢¥* from (7a) and (8), we have the equilibrium condition in the absence
of body forces and body couples

o in V. 9
O.[u]_,_ﬂuk.k =0
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It is obvious that (9) is the condition of integrability [8] for the solutions ¢*/* and
¥¥ of (7a) and (8). It follows from (7a) and (8) that

P = Ik M (7b)
where
,yijkl — ¢gkl_x[j¢i]kl - _yjikl _ _,yijlk' (10)

Any self-equilibrated stress can be expressed in the form of (7) with certain functions ¢*/*
and y*. The functions ¢“* and y’¥ are similar to the stress functions of Maxwell and
Morrera for the classical theory of elasticity [7]. By virtue of (7), (6) can be rewritten as

Jf a'n; dX :%f P*e,, dxP (11a)
X X

ff (Vo™ + pii*yn, d X
X

[ st — gy, ax
X

(U™ 4 yiMye, dx. (11b)
[22.4

3. CONSTITUTIVE EQUATIONS AND HILBERT SPACE FOR STRESS

It can be assumed that the strain energy density U(o, u) due to the stress (o, u) is given
by the quadratic form

U(U’ ﬂ) = %Eiquaijapq + Equroij#pqr +%Gijkpqruijk1upqr (12)
where
Eijpg = Epgijs Fijpar = — Fijapr (13)
Gijkpqr = qurijk = _Gjikpqr = _Gijkqpr'

The quadratic form U(o, ) may be considered to be positive-definite. Corresponding to

(o, p), the strain g;;, k5 (= — K;1) can be defined as follows ;
ouU
b = do'l = Eijpg0"+ Fijparkt™
U (14)

= EW = Fpqiu0® + G pgrijiht?*'-
Now the inner product of (o, 1) and (¢*, u#*) can be defined in the form

. ij ijk
(0, u; 6%, u*) = £;;06*7 + K u*"

_ Eiquaija*”“ + Equr(o-ij #*pqr + ﬂpqra*ij) + Gijkpqr #pqr #*ijk_ ( 1 5)
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Inversely, the stress can be expressed in terms of the strain in the following form;
ij _ Fiirg ijpar
o) = ENPg, + FUPTy
Hijk — quijkqu+quriijpqr

(16)

where EVP4, FP and G'*P4" are given in terms of E;j,q, Fjper» a0d Gijxpar-
Hereafter Hilbert space $ will be introduced to express the stress (g, 1) as a point in it.
This Hilbert space can be defined by the inner product (15): The length of the radial vector

(o, u)in $ is given by
(0, u: 0, )
and the orthogonality condition of the vectors (o, u) and (c*, u*) is given by

(o, ;0% u*) = 0. (17)

4. CONDITION OF COMPATIBILITY
The totality of the points in $ corresponding to such self-equilibrated stresses that
o = ¢ijk) , 'uijk _ _¢[ij]k+yijk1, ;
) v ' (18)
% =0, yHM =0 ondV

forms a subspace R of $H. Applying (11) on JV, it can be seen that the stress (o, u) in 9t
satisfies the condition
on; =0
o 3 on JV. (19)
(xUe™ + iy, = 0

These are considered as the equilibrium condition on ¢V in the absence of external forces.

Fic. 1. Hilbert space $ for stress distributions.

The subspace € of $ orthogonal to N is the totality of such stresses (o, u) that
(o,p;0% p*) =0 (20)

where (6%, u*)is any stress in 9. This condition can be rewritten as
J[ [ o s — gy gy
14

T J-J.f i+ Kig)@ * 7 + Ky * 1 dV = 0
Vv
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where ¢; and x;;, correspond to (o, u) and ¢*“* and y*'* to (o*, p*). It then follows that &;;
and k;; should satisfy the equations

8,‘ i +K,' ikl = 0
L.k] Lk} 21)

Kfij[k,’] =0.
From the second condition of (21), it can be shown that such a function ¥;; (= —y})
exists that
Kijk = l//ij.lw (22)

Substituting this into the first condition of (21), we have
(e +¥i)ig = 0.
Hence we can see that such a function u; exists that
etV = U (23a)
or
& = U ;=Y. (23b)

The functions u; and y;; are regarded as the macro-displacement and the micro-rotation,
respectively. Hence the above equations (21) are the condition of compatibility in the small.
Integrating (22) and (23a), we can determine u; and y;; in the form

P

Uii(P) = Yl A)+ f e (24a)
P
ulP) = uA) + f (6+¥1y) dx?

= ufA)+ wij(xj —x/(A))
P
+ f [ei— (x/— xj(A))Kijk] dx* (24b)
A ¥

where A and P are a fixed and a generic point in V.

To obtain the condition that u; and y,; are determined uniquely in V, the topological
property of the body V' should be investigated [7]. Let p be the one-dimensional Betti
number of V, and let D (o = 1,.. ., p) be such surfaces that V becomes a simply-connected
domain by cutting along D,. The one-dimensional Betti number of 0V is 2p, and 0V can be

F1G. 2. Topology of V.
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made a certain number of simply-connected surfaces by being cut along 0D, and appro-
priate closed curves B,, (¢ = 1,..., p). Without loss of generality, it can be assumed that
each B, does not meet any D,’s other than the corresponding one. Let [0V ] be the totality
of such simply-connected surfaces.

Let X be a simply-connected surface in ¥. It then follows that

[sik - (xj - xj(A))K,‘jk] dx"
ax

o . 3
= %ff (eipey — King— ) = X (APKjpene” 1, X = 0
X

§ Kijp dx* = Jj ,,[k,,e Pn,dX = 0.

The quantities

¢iBy) = § [Sik_xj’\'ijk] dx*
B. (25)

wy(B,) 235 oo

x

are regarded as the dislocation tensors, and the integrals

ji [Eij —(x/— xj(A))Kijk] dx*

§ Kijp dx*

taken for any closed path are given by a linear combination of &(B,) or w"(B,), respectively.
Therefore, when, and only when,

&(B)=0, 'B)=0 (26)

u; and y;; given by (24) are determined uniquely, and (26) are the condition of compatibility
in the large.

and

5. DECOMPOSITION THEOREM
Let & be a subspace of $ corresponding to the totality of such stresses that
0¥ = Bty =) + I,
W = PP, — )+ GPT

where u; and ;; are one-valued functions. It is obvious that ¥ is a subspace of €. Let us
consider the subspace R of H orthogonal to §&: The stress (o, u) in R satisfies

(27)

(o, 50%, u*) =0 (28)
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where (o*, u*) is any stress in . This condition can be rewritten as
— ~[[[ s um v
+f (oI u¥ + pitmgpt) d@V) = 0
v

where u¥ and ¥ ¥ correspond to (a*, u*). Hence the stress (o, p) in R satisfies the equilibrium
condition in the absence of external forces:
6, =0, oy puyk =0 inV
7 . (29)
a'n; = 0, p*n, =0 onéV.

This shows that 9t is a subspace of R. Define a subspace € as the intersection of € and ‘R.
Therefore, the stress in € and the corresponding strain satisfy (21) and (29). It then follows
that

Decomposition theorem. Hilbert space 9 is decomposed as
HS=FCCON=FOR=CoON (30)
C=3FDEC, R=%NPCE (31
That is, any stress (g, u) can be written in the form

0" = of +o +o§ = o +o}f = al+o}

. o o o (32)
P = i+ i = it = el i
where
(0r, )€ &, (08, 1p) € €, (on, uy) € R, (0r, ur) € R, (0¢, o) € €. (33)
By virtue of (32), any stress can be expressed in the form
o =col+ol,  u* = pd* 4 ik
O'éj = Eiqu(up,q_wpq)+Fiqurl//pq,r (34)

ijk ijk ijk
ﬂi('l = Fpra (up,q_‘/,pq)+ GPari '//pq.r
O'H — ¢|J s #Hk — _¢[Ulk+'))ukl,l
where

¢ =0, yHM =0 onadV.

Let us assume that the body V is subjected to the prescribed body force K' and body
couple LY (= — L) per unit volume, and to the prescribed surface force T? and surface
couple MY (= — M¥) per unit area. It is also assumed that the expressions on the left-hand
side of (21) have the certain values S;; (= —Sy;) and R;;u (= — Ry, = — R;j,), which
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may be called the incompatibility tensors. These conditions can be written as

aij_j+Ki =0, 0[""]+uij",k+L"j =0
(35)
Eigj kT Kigjk) = Sijk’ Kijik,n = Rijkl~

Substituting 6/ and p"* from the general expression (34) into these conditions, we have

ol ;+K' =0, o+ pd*  + LYV =0
onV (36a)
Enigja T Knigg = Sijka Knijik,) = Rijkl
odn; = T', wikn, = MY
on oV (36b)
d)uk — Vﬂkl — 0

where gy;; and Ky, correspond to (ay, piy)-

6. EIGEN STRESS

Let us consider a stress (o, ) in €. The force and moment exerting on a surface in V can
also be expressed in the form of (11). Since the left-hand sides of (11) vanish for any surface
on aV, the following integrals are one-valued functions on [¢V]:

D(P) = f PV, dx?
i (37)
FAP) = [ (UM 4+5/Mcy, dx
A
where A4 and P are a fixed and a generic point on each continuous portion of [¢V]. It then
follows that
¢Uk q)z e}kp
vukl — (rz] ’ _x[jq)i] p)eklp
Let 0D}, D, , and B, B; be the boundary ¢[6V] of {8V] corresponding to 0D, and
B,, and let (6D, B}), ... be the intersecting point of two appropriate curves. Defining the
sense of D, and B, so that dD; and B, constitutes a part of the oriented d[dV],

n [0V]. (38)

H o'in,dD, = O(@D; , By )— ®(D;, BY)
D,
/(3D , B, )— di(eD; B} ) = Z(D,)
(39)
f f (U™ 1 1, dD, = T(@D , By )— T(@D; , BY)
D,

x

= I'(oD, ,B;)—Tc¢D, ,Bf) = QY(D,).

Let P, be a point on B,, and let P; and P, be the corresponding points on B, and B,
respectively. It then follows that
(P, )~ ®(P;) = E(D,)

- N N (40)
9P, )—THP;) = QUD,).
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Let Q, be a point on 6D,, and let @; and Q, be the corresponding points on ¢D; and
aD, respectively. We then have

(6D, , B, ) - ®(0D{, By) = ®(Q,)—DH(Q,’) = E{B,)

N (41)
r@D, , B,)~T"@oD;, By) = T(Q,)—TYQ;) = Q/(B,).

The stress (o, 1) in € have the following two alternative expressions:

g = Eij”q(up,q+ lpqu_ Fiqu'l//,,q,r
= ¢4

#l’jk _ F”"ij"(up,q + lﬁpq) + qurijkl/,
_ _¢[ij]k+,yijkl‘l_

pq.r

Now the inner product of stresses in € becomes as
(a,u;o* Jff [¢uk 8* ¢[u]k+,yukl ) :‘;k] dv
fff (P7MeR s+ k) + 77 ] AV

+f (p™ek 4y ikon, d(@V).
av

Using the above expression (38) for ¢! and y"*, we have

i) = [ (004 (T 50 Jegulen V)
= f [Di(eX x’x,,,,)+ r”K,,k] dx*
o[ev]
f J;aV] &itk,p— X K1k, — )+ Trcpe ey d(@V)

= Z{Ei(Da) . (6% — x/kk) dx*+ QUD) | ki dx*

By
- E}(Bu)f (81k ijUk) dx - Q (B )J‘ Kljk dx }
0D, 0Dy
= Y [EAD)EHB,) + QYD Jw(B,)]. (42)

o

It can easily be seen that the macro-stress and couple-stress are given as functions of £(B,)
and w;(B,). Therefore, the inner product (g, u; o*, u*) is given as a bi-linear form of &(B,),
w;{B,), and &¥B,), w¥(B,). Hence the dimension of € is 6p.
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7. CLASSICAL THEORY OF ELASTICITY

The classical elasticity is obtained as the limiting case where the rigidity for couple-
stress becomes infinity. As G, tends to infinity, u"* goes to zero, because x;, should
remain finite. In such a case, k;; is independent of 6"/ and u'*, ¢!/} vanishes, and ¢" is a
symmetric tensor. Accordingly, U becomes as

U = 3E 0" e 43)
where parentheses used with indices indicate the mean with respect to indices:
Eip = %{Eijkl + E i), (44)
From (14) and (23), it follows that
ou

Eij = Bup = 505 T Haa
{43)
iy = gy
Eliminating u; from the expression for ¢;;, we have the well-known condition of compati-
bility in the small for the classical theory of elasticity :
epgian = 0. (46)
Introducing 1% = 0 in (7b), we have
ql){ij]k — '))ijki,ln
Hence it follows that
U = UK GUKIE - yikil | ooy ikil
Therefore, the expression for ¢/ becomes as
O'ij = O'(ij) = ‘Pikﬂ,kl (47)
where W/ is the stress function for the classical theory of elasticity ;

L R (48)

8. CONCLUSION

In this paper, the decomposition of Hilbert space , in which stress distributions are
expressed as points, was derived. Any macro-stress and couple-stress are expressed by
a sum of two parts: one is derived from macro-displacements and micro-rotations, and the
other from stress functions. The general properties of eigen stress were also discussed.
All the characteristics of § are almost the same as those for the classical theory of elasticity.
The present intrinsic theory was developed on the basis of the global condition of equili-
brium as the classical theory of elasticity.
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AGcTpakT—B HacTosed paboTe omnpenenseTcA JuHeliHas, CBOWCTBEHHAsA TEOPHA IJIA KOHTHHYyyMa
Koccepa B cMBIC/IE 1aibHeilero pa3BUTHA KilacCH4Yeckoi Teopuun ynpyroctH. IlyreM BBeaeHus (yHxumit
HaTPsKEHMs!, BLIBOAMTCS TeopemMa pa3lioxeHus npocrpancrBa ['mnsbepra Ii1s pacnipeneneHMst Hanpsik-
enuit. O6CYXIaloTCs CBOMNCTBA TAK Ha3. COOCTBEHHOIO HAMPAXKEHUA.



