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AN INTRINSIC THEORY OF A COSSERAT CONTINUUM

Y OSHIYUKI YAMAMOTO

Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo

Abstract-In this paper, a linear intrinsic theory is developed for a Cosserat continuum as a natural extension
of the classical theory of elasticity. Introducing the stress functions. a decomposition theorem of Hilbert space
for stress distribution is derived. and the properties of the so-called eigen stress is discussed.

1. INTRODUCTION

MANY papers have been published for the elasticity of Cosserat continuum, and some of
them have treated the fundamental characteristics of this new elasticity [1-6]. In this paper,
stress functions are introduced naturally from the global condition of equilibrium, and the
condition of compatibility is investigated thoroughly. The structure of Hilbert space in
which the stress distributions are expressed is examined, and a decomposition theorem is
proved by a method similar to that of the classical theory of elasticity [7].

Assume a smooth surface in a Cosserat continuum in a state. After deformation, how
ever, this surface becomes jagged, and it is due to the deformations of the micro-medium.
As to a deformed Cosserat continuum, it is assumed that the micro-rotation or the rotation
of the micro-medium relative to the macro-medium is due to the so-called couple-stress,
which contributes a part of the moment exerting on an inner surface of a Cosserat con
tinuum.

Let Xi, (i = 1,2,3), be the rectangular Cartesian coordinate. Assume that a Cosserat
continuum locates in a certain domain V. The coordinate Xi of a material point can be
introduced in the undeformed configuration, and it is regarded as the Lagrangian co
ordinate. In this paper, the summation convention is used as usual, and indices after a
comma indicate the ordinary differentiation with respect to appropriate Lagrangian
coordinates.

2. STRESS FUNCTIONS

In a deformed state, the stress distribution sii in the micro-medium is not necessarily
smooth but may be singular. From the view-point of the macro-medium, the stress distri
bution sii can be equivalently substituted by the macro-stress (Jii and the couple-stress
/liik( = _ /liik) :

(1)

IIx X[jSi1k nk dX = IIx (X[j(Ji]k + /liik)nk dX
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where X is any smooth surface portion in the undeformed state, whose diameter is larger
than the scale of the micro-medium, nj is the unit normal vector on it, and brackets used
with indices mean the mixing with respect to appropriate indices:

(2)

The macro-stress (Jij and the couple-stress p.i j
\ which will be referred as the stress ((J, p.),

can be considered to be expressed by differentiable functions of Xi.

Consider a self-equilibrated stress ((J, p.). The corresponding resultant force and moment
on any two surfaces with a common boundary curve give the same values, owing to equili
brium of the body portion between these two surfaces. Therefore, the resultant force and
moment on any surface region X should be determined by line integrals ofcertain functions
on the boundary ax of X:

where

e,'j'k
_

_ eijk --1-11" if ijk is an even permutation of 123
if ijk is an odd permutation of 123

0, otherwise.

The functions cPijk and cPHk1 are considered as such differentiable functions of Xi that

(3)

(4)

(5)

By virtue of Stokes' theorem, (3) becomes as

It then follows that

(6)

(7a)

(8)

Eliminating cPijk and cPt' from (7a) and (8), we have the equilibrium condition in the absence
of body forces and body couples

(Jij,j = 0

(J[ij] + J1i j k,k = 0
in V. (9)
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It is obvious that (9) is the condition of integrability [8] for the solutions </>ijk and
</>W

'
of (7a) and (8). It follows from (7a) and (8) that

where

J1i j k = _ </>[ij1k + yijkl.
1 (7b)

(10)

Any self-equilibrated stress can be expressed in the form of (7) with certain functions </>ijk

and yijkl. The functions </>ijk and yijkl are similar to the stress functions of Maxwell and
Morrera for the classical theory of elasticity [7]. By virtue of (7), (6) can be rewritten as

(IIa)

fix (XUO"ilk + J1
ijk

)nk dX

= fix (X[j</>i1kl. l _ </>[ijlk + yijkl,l)nk dX

(lIb)

3. CONSTITUTIVE EQUATIONS AND HILBERT SPACE FOR STRESS

It can be assumed that the strain energy density U(O", J1) due to the stress (0", J1) is given
by the quadratic form

where

U( ) - 1E ij pq +F ij pqr + 1G ijk pqr
0", J1 -"2" ijpqO" 0" ijpqrO" J1 "2" ijkpqrJ1 J1

Fijpqr = - Fijqpr

Gijkpqr = Gpqrijk = -Gjikpqr = -Gijkqpr'

(12)

(13)

The quadratic form U(O", J1) may be considered to be positive-definite. Corresponding to
(0", J1), the strain Gij' Kijk (= - Kjik) can be defined as follows;

au
G" - - - E· ,.pq+ F I/pqr
I) - aO"ij - IjpqV ijpqrr

au
K - -- - F ,.pq + G I/pqr

ijk - a J1i j k - pqijkV pqrijkr'

Now the inner product of (0", J1) and (0"*, J1*) can be defined in the form

(0", J1; 0"*, J1*) = GiP*i
j +KijkJ1*i

j
k

= E .. O"ijO"*pq+F. (O"iil/*pqr+l/pqrO"*ij)+G.. I/pqr 1/* ijk
l)pq l)pqr r' r I)kpqrr r .

(14)

(15)
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(16)

Inversely, the stress can be expressed in terms of the strain in the following form;

ITij = Eijpqc + FijpqrK
pq pqr

f.1i j k = FpqijkCpq + GpqrijkKpqr

h E ijpq Fijpqr d Gijkpqr . . t fE F d Gwere , ,an are given III erms 0 ijpq' ijpq" an ijkpqr'

Hereafter Hilbert space f) will be introduced to express the stress (IT, f.1) as a point in it.
This Hilbert space can be defined by the inner prod uct (15) : The length of the radial vector
(IT, f.1) in f) is given by

(IT, f.1; IT, f.1)+

and the orthogonality condition ofthe vectors (IT, f.1) and (IT*, f.1*) is given by

(IT, f.1; IT*, f.1*) = O.

4. CONDITION OF COMPATIBILITY

The totality of the points in f) corresponding to such self-equilibrated stresses that

(17)

(18)

(19)

¢ijk = 0, yijkl = 0 on av

forms a subspace 91 of f). Applying (11) on av, it can be seen that the stress (IT, f.1) in 91
satisfies the condition

ITijn· = 0
J on av.

(XUITi)k + f.1ijk)nk = 0

These are considered as the equilibrium condition on av in the absence of external forces.

:etc
J :n.

[;

FIG. 1. Hilbert space S for stress distributions.

The subspace It of f) orthogonal to 91 is the totality of such stresses (IT, f.1) that

(IT, f.1; IT*, f.1*) = 0

where (IT*, f.1*) is any stress in 91 This condition can be rewritten as

ffIv [cij¢*ijk,k + Kijk( - ¢*Iij)k + y*ijkl,I)] d V

= - ffIv [(Cili.k) + Kilik)¢*ijk+ Kij[k,l)y*ijkl] d V = 0

(20)
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where Gij and Kijk correspond to (0", 11) and ¢*jjk and y*jjkl to (0"*,11*). It then follows that Gij

and Kjjk should satisfy the equations

GiU,kj +KiUk) = 0

Kij[k,l) = o.
(21)

From the second condition of (21), it can be shown that such a function ljJij(= -ljJ jJ
exists that

Kijk = ljJij.k'

Substituting this into the first condition of(21), we have

(GjU + IjJ iU),kj = 0,

Hence we can see that such a function Uj exists that

or

(22)

(23a)

(23b)

The functions Uj and ljJij are regarded as the macro-displacement and the micro-rotation,
respectively. Hence the above equations (21) are the condition ofcompatibility in the small.
Integrating (22) and (23a), we can determine Uj and ljJij in the form

IjJj)P) = ljJij(A)+ f: Kjjk dxk

Uj(P) = uj(A)+ f: (Gij + IjJj) dx
j

= uj(A)+ljJij(xj -xj(A))

+fP [ejk-(xj-xj(A))KijkJ dxk

A '

(24a)

(24b)

where A and P are a fixed and a generic point in V.
To obtain the condition that Uj and ljJij are determined uniquely in V, the topological

property of the body V should be investigated [7]. Let p be the one-dimensional Betti
number of V, and let Dirt. = 1"." p) be such surfaces that V becomes a simply-connected
domain by cutting along Da • The one-dimensional Betti number of aVis 2p, and av can be

FIG. 2. Topology of V.
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made a certain number of simply-connected surfaces by being cut along aDa and appro
priate closed curves Ba , (Il( = 1, ... , p). Without loss of generality, it can be assumed that
each Badoes not meet any Da's other than the corresponding one, Let [aV] be the totality
of such simply-connected surfaces.

Let X be a simply-connected surface in V. It then follows that

1, [cik-(xj-xj(A»Kijddxk

hx

The quantities

(25)

wij(Ba) = 1, Kijk dxk

jB~

are regarded as the dislocation tensors, and the integrals

f [cij - (x
j

- xi(A»Kijk] dx
k

and

taken for any closed path are given by a linear combination of ~i(Ba)or wij(Ba), respectively,
Therefore, when, and only when,

(26)

(27)

Ui and ljJij given by (24) are determined uniquely, and (26) are the condition ofcompatibility
in the large.

5. DECOMPOSITION THEOREM

Let tj be a subspace of ~ corresponding to the totality of such stresses that

aij Eijpq(u - .1, ) + Fijpqr,l,P.q 'I' pq 'I' pq,r

"iik Fpqijk(U _ ,I, ) +Gpqrijk,l.{-' p,p 'I' pq 'I' pq,r

where Ui and ljJIj are one-valued functions. It is obvious that tj is a subspace of 6:. Let us
consider the subspace 9l of ~ orthogonal to tj: The stress (a, {t) in 9l satisfies

(a, {t; a*, {t*) = 0 (28)
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where (a*, Ji*) is any stress in !j. This condition can be rewritten as

fft [aij(u~j-t/J0)+Jiijkt/J0,kJ dV

- fft [aij,jUr + (aWl + Jiijk ,k)t/JtJ dV

+fLv (aijnjUr +~ijknkt/J0) d(oV) = 0

1019

where ur and t/Jo correspond to (a*, Ji*). Hence the stress (a, Ji) in 9\ satisfies the equilibrium
condition in the absence of external forces:

aij . = 0
.J '

aW ]+ Jiijk,k = 0 in V

Jiijknk = 0 on 0V.
(29)

This shows that 91 is a subspace of 9\. Define a subspace (f as the intersection of (f and 9\.
Therefore, the stress in (f and the corresponding strain satisfy (21) and (29). It then follows
that

Decomposition theorem. Hilbert space i) is decomposed as

i)=!jEB(fEB91=!jEB9\=(fEB91

(f = ~ EB (f, 9\ = 91 EB (f.

That is, any stress (a, Ji) can be written in the form

aij = aW +a~ +a~ = aW +a~ = a~ +a~

Jiijk = JiW +Ji~k + JiW = JiW + Ji~k = Ji~k +Ji~k

where

By virtue of (32), any stress can be expressed in the form

(30)

(31)

(32)

(33)

a~ = Eijpq(up,q - t/J pq) + Fijpqrt/J pq,r

Ji~k = Fpqijk(Up,q - t/J pq) + Gpqrijkt/J pq,r
(34)

where

yijkl = 0 on aVo

Let us assume that the body V is subjected to the prescribed body force K i and body
couple Lij (= - Oi) per unit volume, and to the prescribed surface force T i and surface
couple Mij (= - Mji) per unit area. It is also assumed that the expressions on the left-hand
side of (21) have the certain values Sijd= -Sik) and Rijkd= -Rjikl = -Rij1d, which
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may be called the incompatibility tensors. These conditions can be written as

(Jii.j + K i = 0, (J[ij] + pijk,k +Lij = 0

Ci[j,k)+Ki[jk) = Sijk, Kij[k,l) = R ijk1 ·

Substituting (Jij and pijk from the general expression (34) into these conditions, we have

(35)

(J~,j+ K i = 0,

cNi[j.k) +KNi[jk) = Sijk'

(J'c"in . = T i

J '

</>~k = 0,

where CNij and KNijk correspond to ((IN, PN)'

KNij[k.I) = R ijk1

p~knk = Mij

yWI = 0

on V

on av

(36a)

(36b)

(37)

6. EIGEN STRESS

Let us consider a stress (J, p) in <f. The force and moment exerting on a surface in V can
also be expressed in the form of (11). Since the left-hand sides of (11) vanish for any surface
on av, the following integrals are one-valued functions on [aV]:

<1>i(p) = tf: qPejlp dxP

rij(p) = tf: (X[j</>i)kl + yijkl)eklp dxP

where A and P are a fixed and a generic point on each continuous portion of [a v]. It then
follows that

A.ijk = <1>i eikp
'f' .p

"ijkl = (rij _ X[j<1>i) )ek1p
I .p .p

on [av]. (38)

(39)

(40)

Let aD:, aD;, and B:, B; be the boundary a[aV] of [aV] corresponding to aD, and
B" and let (aD:, B:), ... be the intersecting point of two appropriate curves. Defining the
sense of D, and B, so that aD: and B: constitutes a part of the oriented a[aV],

ff (JijnjdD, = <1>i(aD:,B;)-<1>i(aD:,B:)
Do

= <1>i(aD;, B;) - <1>i(oD; ,B:) == 2,i(D,)

fI (X[j(Ji)k +pijk)nk dD, = rij(oD:, B;) - rij(aD:, B:)
D.

= rij(aD;, B;) - rij(aD; , B:) == n,u(D,).

Let P, be a point on B" and let P,+ and P,- be the corresponding points on B: and B;,
respectively. It then follows that

<1>i(p;)_<1>i(p:) = 2,i(D,)
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Let Q~ be a point on cD~, and let Q~+ and Q~- be the corresponding points on cD: and
cD~- respectively. We then have

<l>i(cD;, B;)-<I>i(cD:, B;) = <l>i(Q;)_<I>i(Q:) == 3}(B~)

rii(cD;,B:)-rii(cD:,B:) = rii(Q;)-rii(Q:) == nY(B~).

The stress (0-, f.1) in (f have the following two alternative expressions:

o-ij = Eijpq(u + .1, ) + Fijpqr.l,p,q 'I' pq 'I' pq,r

= ¢ijk,k

f.1i jk = Fpqijk(U + .1, ) + Gpqrijk.l,p,q 'I' pq 'I' pq,r

= _ ¢[ij]k +yijkl. l .

Now the inner product of stresses in (f becomes as

ff f [.+.ijk( * + * )+ ijkl * ] dV- Jv'v CiU,k] KiUk] Y Kij[k,l]

Using the above expression (38) for ¢ikl and yiikl, we have

(0- f.1' 0-* f.1*) = ff [<I>i c~ +(r ii - xj<l>i )K~' ]eklPn d(c V), , , ,p lk .p ,p lJk· I
OY

= f [<I>i(cit - xjK0k) + riiK0k] dxk
O[OY]

(41)

-ff. [mi( * - j * - * )+rij * ] kIp d(:'lV)W Ci[k,p] X Kij[k,p] Ki[pk] Kij[k,p] e n, U

[OY]

= I [3i(D~)~t(B~)+ nii(D~)w0(B~)].
~

(42)

It can easily be seen that the macro-stress and couple-stress are given as functions of ~i(B~)

and wJB~). Therefore, the inner product (0-, f.1; 0-*, f.1*) is given as a bi-linear form of ~i(B~),

wii(B~), and ~t(B~), w0(B~). Hence the dimension of (f is 6p.
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7. CLASSICAL THEORY OF ELASTICITY

The classical elasticity is obtained as the limiting case where the rigidity for couple
stress becomes infinity. As GUkpqr tends to infinity, Jlijk goes to zero, because Kijk should
remain finite. In such a case, Kijk is independent of a

lj and Jli
j
\ aliil vanishes, and ali is a

symmetric tensor. Accordingly, U becomes as

_ I U klU - ZE(iiHkl)a a (43)

where parentheses used with indices indicate the mean with respect to indices:

E(ij)kl = 1<Eijk1 +E jikl ). (44)

From (14) and (23), it follows that

au
eij = e(ijl = aaij = u(i,j)

(45)

Eliminating Ul from the expression for elj, we have the well-known condition of compati
bility in the small for the classical theory of elasticity:

e[i[j,k]1] O.

Introducing Jlii
k = 0 in (7b), we have

<j>[ij]k = yUkl,l'

Hence it follows that
<j>(ij)k = <j>[ikJj + <j>[jk]i = yikjl,l +yikil,l'

Therefore, the expression for aU becomes as

where '¥lkjl is the stress function for the classical theory of elasticity;

8. CONCLUSION

(46)

(47)

(48)

In this paper, the decomposition of Hilbert space ~, in which stress distributions are
expressed as points, was derived. Any macro-stress and couple-stress are expressed by
a sum of two parts: one is derived from macro-displacements and micro-rotations, and the
other from stress functions. The general properties of eigen stress were also discussed.
All the characteristics of~ are almost the same as those for the classical theory ofelasticity.
The present intrinsic theory was developed on the basis of the global condition of equili
brium as the classical theory of elasticity.
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A6CTpaKT-B HaCTOIIll.\eH pa60Te onpeAeJlileTCli JlHHeHHall, CBOHCTBeHHali TeopHli AJllI KOHTHHyyMa
Koccepa B CMblCJle AaJlbHeHWero pa3BHTHli KJlaCCH'lecKoH TeopHH ynpyrocTH. nyTeM BBeAeHHlI <!JYHKQHH
HanplilKeHHlI, BblBOAHTCli TeopeMa pa3J10lKeHHlI npOCTpaHCTBa rHJlb6epTa AJllI pacnpeAeJleHHlI HanplllK
eHHH. 06cYlKAalOTcli CBOHCTBa TaK Ha3. co6cTBeHHoro HanplilKeHHlI.


